Score Normalization and Aggregation for Active Learning in Multi-label Classification
نویسندگان
چکیده
Active learning is useful in situations where labeled data is scarce, unlabeled data is available, and labeling a large number of examples is costly or impractical. These techniques help by identifying a minimal set of examples to label that will support the training of an effective classifier. Thus active learning is particularly relevant for the automation of annotation tasks in multimedia. In this paper we consider the problem of employing active learning for the assignment of multiple annotations or “tags” to images in personal image collections. This form of multi-label classification has received a lot of attention in recent years, however active multi-label classification is still a new research area. The main challenge in active multilabel classification is the selection of unlabeled examples that will be informative for all tags under consideration. This selection task proves surprisingly difficult primarily because of the paucity of labeled data available. In this paper we present some solutions to this problem based on aggregated rankings from classifiers for individual tags.
منابع مشابه
MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملExploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملActive Learning with Multi-Label SVM Classification
Multi-label classification, where each instance is assigned to multiple categories, is a prevalent problem in data analysis. However, annotations of multi-label instances are typically more timeconsuming or expensive to obtain than annotations of single-label instances. Though active learning has been widely studied on reducing labeling effort for single-label problems, current research on mult...
متن کاملScore Normalization Methods Applied to Topic Identification
Multi-label classification plays the key role in modern categorization systems. Its goal is to find a set of labels belonging to each data item. In the multilabel document classification unlike in the multi-class classification, where only the best topic is chosen, the classifier must decide if a document does or does not belong to each topic from the predefined topic set. We are using the gene...
متن کاملSemi-automatic Labeling with Active Learning for Multi-label Image Classification
For multi-label image classification, we use active learning to select examplelabel pairs to acquire labels from experts. The core of active learning is to select the most informative examples to request their labels. Most previous studies in active learning for multi-label classification have two shortcomings. One is that they didn't pay enough attention on label correlations. The other shortc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010